
1. Writing a Plugin for fuzzyIDE:

- the easiest way to start is to use the structure given to you in the archive
<exampleplugin.zip>

- the buildfile <build.xml> is for use with the AntFarm
- the <build/META-INF/manifest.mf> is important for the final plugin-jarfile

1.1 manifest.mf:

Manifest-Version: 1.2
Created-By: 1.3.0 (Sun Microsystems Inc.)
PluginMain-Class: myplugin.MyPlugin

- change the PluginMain-Class Value to the one you need (Mainclass of your plugin)
- in case your plugin needs any external libs use the “classpath” tag in this file.

1.2 build.xml:

- adjust this file for your purposes
- while building the final pluginjarfile there will be automatically put the manifest.mf into

the jar-file.

1.3 getting started:

- always use the fuzzyIDE – API to get detailed information
- the <fuzzyide.jar> gives you all the classes you need
- use the <myplugin.java> file to have a framework to start with

- you have to implement several Interfaces to register your program as a plugin for the

fuzzyIDE

1.3.1 The Interfaces to be implemented as needed:

1.3.1.1 Plugable:

- the MainInterface to register your program as a plugin

 /**called from the PluginManager of the fuzzyIDE after construction of the object
 *@param pluginID every plugin gets an id for identification and authentification
 *@param location path to the plugin (must'nt be used)
 *@param locale represents a specific geographical, political, or cultural region
 @param applicationInterface The ApplicationInterface/
 public void init(ApplicationInterface applicationInterface,
 int pluginID,
 File location,
 Locale locale);

/** is called before the shutdown of the plugin (f.e. at the application-shutdown)*/
 public void exit();

 /**Gets the name of the Plugin */
 public String getName();

 /**@return the pluginID which is given by the init-method*/
 public int getID();

 /** Gets the jMenuItem attribute of the Plugin, eventListener must be added by the
 * plugin
 @return The jMenuItem or null if this Plugin has no Menuentry/
 public JMenuItem getJMenuItem();

 /** a panel for the plugin, where the user can configurate the plugin
 * events must be catched from eventListeners, added to the panel
 *@return JPanel the configPanel or null if this Plugin has no Configpanel
 */
 public JPanel getConfigPanel();

1.3.1.2 DataModelAccessable

- used to get access to the DataModel (XML-Model)

/*called when a datamodel is created gives the plugin the reference to the datamodel

 inside this method the plugin should register his observation/
 public void dataModelCreated(FuzzyModel fm);

 /* called when a datamodel is closed

 * after this method there is no dataModel available */
 public void dataModelClosed();

1.3.1.3 ModelObserver:

- used to get informed about changes on the DataModel
- extends java.util.Observer

 /** automatically called, when the model has changed*/
public void update(Observable obs, Object obj);

1.3.1.4 Viewable:

- used to get access to the desktop (using, changing Internalframes)

/*called when a the view is created gives the plugin the reference to the view

 *inside this method the plugin should register his observation */
 public void viewCreated(ViewInterface v);

1.3.1.5 ActionListener:

- handle all the ActionEvents in your plugin (JMenu …)

1.3.2 The AbstractPlugin – Class:

- already implements part of Plugable and Viewable
- you have just to implement the following Methods of Plugable:

- void exit()
- String getName()
- JMenuItem getJMenuItem()
- JPanel getConfigPanel()

- if you need to, you can also override methods of AbstractPlugin

public abstract class AbstractPlugin implements Plugable, Viewable
{

protected int pluginID;
 protected ApplicationInterface application;
 protected ViewInterface view;
 protected File file;
 protected Locale locale;

//inherited from Plugable

 public void init(ApplicationInterface applicationInterface, int pluginID, File location, Locale locale)
 {
 this.application = applicationInterface;
 this.pluginID = pluginID;
 this.file = file;
 this.locale = locale;
 this.initComponents();
 }

 //inherited from Plugable
 public int getID()
 {
 return this.pluginID;
 }

 //inherited from Viewable

/** called when a the view is created gives the plugin the reference to the view
* inside this method the plugin should register his observation
*/
public void viewCreated(ViewInterface v)

 {
this.view = v;

}

 /* here you can initialise all your GUI or other Components of the Plugin */
 public abstract void initComponents();
}

	1. Writing a Plugin for fuzzyIDE:
	1.1 manifest.mf:
	1.2 build.xml:
	1.3 getting started:
	1.3.1 The Interfaces to be implemented as needed:
	1.3.1.1 Plugable:
	1.3.1.2 DataModelAccessable
	1.3.1.3 ModelObserver:
	1.3.1.4 Viewable:
	1.3.1.5 ActionListener:

	1.3.2 The AbstractPlugin – Class:

